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Abstract

In two recent papers, the induced loss factor is determined via the modification to the loss factor in the
linear impedance of a master oscillator caused by its coupling to a set of satellite oscillators. A loss factor is
basically an energetic quantity and, therefore, one may inquire whether the induced loss factor may be
estimated via an energy analysis (EA). An answer to this question is sought. It is shown that the linear
impedance analysis and EA yields identical results for the induced loss factor in the appropriate frequency
range. This frequency range spans the distribution of resonance frequencies of the satellite oscillators. In
this frequency range, the identity of the results is not only in terms of gross features but also in detail.
Finally, the relationship of EA to statistical energy analysis (SEA) is explored. The loss factors assigned to
the satellite oscillators are cast in terms of modal overlap parameters. It is found necessary for the
validation of SEA, in the light of EA, that these parameters exceed a certain threshold. In specific situations
of interest the threshold values may exceed unity.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In two recent papers, the influence on the response behavior of a master oscillator due to its
coupling to a set of satellite oscillators is derived and examined [1,2]. The complex, comprising a
master oscillator coupled to a set of satellite oscillators, is sketched in Fig. 1. The examination is
conducted in terms of the induced loss factor as a function of the normalized frequency variable.
The normalizing frequency is the resonance frequency of the master oscillator in isolation. The
induced loss factor accounts for the modification in the loss factor in the linear impedance of the
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master oscillator caused by the coupling. This modification is the focus of the investigation
performed in Refs. [1,2] and is also the focus of the investigation in this paper. Here, however, the
emphasis is on an energy analysis (EA), rather than on a linear impedance analysis (LIA).

As Fig. 1 indicates, the coupling between the master oscillator and a satellite oscillator allows
for stiffness, mass and gyroscopic elements and for mixtures of these elemental coupling forms
[3,4]. With the assistance of Fig. 1, the linear equations of motion for a master oscillator in
isolation, for a coupled master oscillator and for a typical satellite oscillator are stated in forms
that are the same as those obtained in Ref. [2]. For this reason Ref. [2] needs to be consulted as
fundamental to the investigation conducted herein. As in Ref. [2], similarity is imposed on the
stiffnesses (springs) that are placed on either side of the mass elements of a satellite oscillator. This
similarity defines two spring factors and a specific distribution for the resonance frequencies of the
satellite oscillators. In this distribution, the resonance frequencies are indexed sequentially with
equal numbers of satellite oscillators on either side of the resonance frequency of the master
oscillator. As already intimated, the resonance frequency of the master oscillator is also used to
normalize frequencies [2]. In Ref. [2] the various impedances that define the complex are stated
and the LIA is developed and used to determine the induced loss factor. The induced loss factor
adds to the indigenous loss factor in the impedance of the master oscillator when it is coupled to
the set of satellite oscillators. When couplings are absent, the induced loss factor is equal to zero.
In this paper, the impedance equations of motion are use to develop an EA. The quantities in the
analysis are the energies stored in the oscillators and in the couplings and the external force-drive
is expressed in terms of the external power input [3]. The stored energies are normalized by the
kinetic energy stored in the master oscillator and the powers by this kinetic energy times the
frequency. Although the analytic procedure is different from that conducted in Ref. [2],
computations of the two induced loss factors by the two procedures show them to be identical. So
much so that the relevant figures in Ref. [2] are directly applicable.

Two renormalizations of the stored energies and the powers define two loss factors,
respectively. The one pertains to a renormalization that is effected by the stored energy; kinetic
plus potential, that is stored in the master oscillator only. The other pertains to a renormalization
that is effected by the stored energy in the entire complex, therefore, including the energies stored
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in the satellite oscillators and in their couplings. The first loss factor is dubbed virtual and is
designated illegitimate [5]. The second loss factor is dubbed effective and is designated legitimate
[5]. It is argued that the difference between these two loss factors largely accounts for the energy
imbalance that beset earlier investigations in this research area [6–13].

Finally, the EA, developed herein, estimates the modal coupling strength. The modal coupling
strength is a measure of the ratio of the average energy stored in a single satellite oscillator and its
coupling to that stored in the master oscillator [3]. Comparing mean-value modal coupling
strengths, derived via the EA to that derived via the statistical energy analysis (SEA), reveals that
the validity of SEA necessarily demands that the satellite oscillators be assigned loss factors with
associated modal overlap parameters that exceed a determined threshold value [3,14]. Examples of
computed threshold values are briefly cited.

2. Derivation of the energy equations of motion

The linear equations of motion of the complex composed of a master oscillator coupled to a set
of satellite oscillators may be largely derived via the Lagrange equations. The Lagrangian
describes the difference between the kinetic and potential energies stored in the oscillators and in
the couplings [3]. (Notwithstanding that the linear equations of motion are correctly stated in Ref.
[3], a persistent typographical error in the preceding Lagrange equations needs to be corrected.)
Although the kinetic and potential energies are here determined separately, it is the energy and not
the Langrangian, as such, that is of immediate interest. The kinetic energy EoKðyÞ plus the
potential energy EoPðyÞ stored in the master oscillator, as functions of the normalized frequency
ðyÞ; is given by

EoðyÞ ¼ EoK ðyÞ þ EoPðyÞ; EoK ðyÞ ¼ ð1=2ÞMojVoðyÞj2;

EoPðyÞ ¼ ðyÞ�2EoKðyÞ; y ¼ ðo=ooÞ; oo ¼ ðKo=MoÞ
1=2; ð1Þ

where EoðyÞ is the stored energy, VoðyÞ is the response, Mo is the mass element and Ko is the
stiffness element in the master oscillator [3]. Analogously, the kinetic energy ErK ðyÞ and the
potential energy ErPðyÞ that is stored in the rth satellite oscillator is given by

ErðyÞ ¼ ErK ðyÞ þ ErPðyÞ; ErK ðyÞ ¼ ð1=2ÞmrjVrðyÞj
2;

ErpðyÞ ¼ ðzrÞ
2ErK ðyÞ; zr ¼ ðxr=yÞ; xr ¼ ðor=ooÞ; ðorÞ ¼ ðkro=mrÞ

1=2; ð2Þ

where ErðyÞ is the stored energy, VrðyÞ is the response, mr is the mass element and kro is the
stiffness element of the rth satellite oscillator, respectively [3]. In addition, the kinetic energy
EcrK ðyÞ and the potential energy EcrPðyÞ stored in the coupling, between the master oscillator and
the rth satellite oscillator, is given by

EcrðyÞ ¼ EcrK ðyÞ þ EcrPðyÞ; ð3aÞ

EcrKðyÞ ¼ ð1=2Þmr %mcrjVoðyÞ þ VrðyÞj
2

�
þImfðgr=yÞ½VoðyÞ þ VrðyÞ	½VoðyÞ � VrðyÞ	
g

�
; ð3bÞ

EcrP ¼ ð1=2ÞmrðzcrÞ
2jVoðyÞ � VrðyÞj2; zcr ¼ ðxcr=yÞ;

xcr ¼ ðocr=ooÞ; ocr ¼ ðkcro=mrÞ
1=2; ð3cÞ
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where EcrðyÞ is the stored energy, mcr is the mass element, %mcr ¼ ðmcr=mrÞ; kcro is the
stiffness element and gr is the normalized gyroscopic element, gr ¼ ½Gr=ðoomrÞ	; in the coupling
between the master oscillator and the rth satellite oscillator [3]. Using the impedance version
of the equations of motion as derived in Refs. [1,2], Eq. (3) may be cast more explicitly in
terms of the parameters that define the complex under investigation. From Eqs. (3a)–(3c) this
procedure yields

%EoðyÞD½1 þ ðyÞ�2	; %EoðyÞ ¼ ½EoðyÞ=EoK ðyÞ	; ð4aÞ

%ErðyÞ ¼ ½ErðyÞ=EoK ðyÞ	 ¼ %mr½f1 þ ðzrÞ
2gjBrj

2	; ð4bÞ

%EcrðyÞ ¼ ½EcrðyÞ=EoKðyÞ	 ¼ %mr½ %mcrj1 þ Brj
2 þ ðzcrÞ

2j1 � Brj
2 � iðgr=yÞðBr � B


r Þ	; ð4cÞ

respectively, where a single bar over a stored energy quantity, e.g., %ErðyÞ; indicates a normalization
by the kinetic stored energy EoK ðyÞ: In Eq. (4) the quantities BrðyÞ; zr; zcr and %mr are
defined as

BrðyÞ ¼ �½ %mcr þ ðzcrÞ
2ð1 þ iZcrÞ � iðgr=yÞ	½ð1 þ %mcrÞ � ðzrrÞ

2ð1 þ iZrrÞ	
�1; ð5aÞ

ðzrrÞ
2ð1 þ iZrrÞ ¼ ðzrÞ

2ð1 þ iZrÞ þ ðzcrÞ
2ð1 þ iZcrÞ; %mr ¼ ðmr=MoÞ ð5bÞ

where Zr and Zcr are the assigned loss factors associated with the stiffness elements kro and kcro;
respectively [2,3] [cf., Eqs. (2) and (3)]. In assessing the distribution of the stored energies, it is
compelling to distinguish between the normalized energy

%EoðyÞ ¼ ½1 þ ðyÞ�2	; ð6aÞ

that is stored in the master oscillator and the normalized energy

%EosðyÞ ¼
XR

1

%EorðyÞ; %EorðyÞ ¼ %ErðyÞ þ %EcrðyÞ; ð6bÞ

that is stored in the satellite oscillators and in the couplings of these oscillators to the
master oscillator [cf., Eqs. (1)–(4)]. These normalized stored energies are, clearly, functions
of the normalized frequency (y), y ¼ ðo=ooÞ and they are sustained in the complex by the
external input power PeðyÞ: This external input power is generated by the external
force-drive PeðyÞ that acts on the master oscillator; the satellite oscillators are not
externally force driven in this analysis (cf., Fig. 1). In an endeavor to determine an
energy based induced loss factor one needs to determine this external input power. The
endeavor is facilitated by briefly recalling the manner by which an impedance based induced
loss factor is determined. From Refs. [1,2] one recalls the impedance equations of motion
to be in the form

ZoðoÞVoðoÞ ¼ PeðoÞ ) ZoðyÞVoðyÞ ¼ PeðyÞ; ð7aÞ

ZoðyÞ ¼ ðioMoÞ½1 � ðyÞ�2f½1 � SðyÞ	 þ i½Zo þ ZI ðyÞ	g	; ð7bÞ

ARTICLE IN PRESS

G. Maidanik, K.J. Becker / Journal of Sound and Vibration 266 (2003) 33–4836



½SðyÞ � iZI ðyÞ	 ¼
XR

1

½SrðyÞ � iZIrðyÞ	;

SrðyÞ � iZIrðyÞ ¼ ðyÞ2f %mrf½1 � ðzrÞ
2ð1 þ iZrÞ	

 ½ %mcr � ðzcrÞ
2ð1 þ ZcrÞ	 � ðqcr=yÞ2g

 ½ð1 þ %mcrÞ � ðzrrÞ
2ð1 þ iZrrÞ	

�1g; ð7cÞ

ðqcr=yÞ2 ¼ 4 %mcrðzcrÞ
2ð1 þ iZcrÞ þ ðgr=yÞ2; ð7dÞ

where ZoðoÞ; VoðoÞ and PeðoÞ are, respectively, the linear impedance, the response and the
external force-drive that is applied to the master oscillator. This force-drive induces the response
VoðoÞ in the master oscillator and the response VrðoÞ in the rth satellite oscillator when the set of
satellite oscillators is coupled to the master oscillator. In Eq. (7) the parameters
f %mr; zr; Zr; %mcr; zcr; Zcr; zrr; Zrr; grg define the satellite oscillators and their couplings to the
master oscillator (cf., Eq. (5)). In Ref. [2], ZI ðyÞ is identified with the induced loss factor. As briefly
depicted in Eq. (7), ZI ðyÞ is derived on the basis of the LIA. In the present paper, an endeavor is
made to derive the induced loss factor on the basis of an EA.

3. Conservation of energy—the balance of power—and the derivation of the induced loss factor via

an EA

The normalized external input power may be derived from Eq. (7) in the form

%PeðyÞ ¼ ½PeðyÞ=foEoK ðyÞg	; %PeðyÞ ¼ RefPeðyÞV

o ðyÞg;

ðy2=2Þ %PeðyÞ ¼ ½Zo þ ZI ðyÞ	;VoðoÞ ) VoðyÞ; PeðoÞ ) PeðyÞ; ð8Þ

where, hereafter, a single bar over a power quantity, e.g., %PeðyÞ; indicates a normalization by the
power quantity foEoK ðyÞg (cf., Eq. (4)). The third of Eq. (8) states that a portion %PoðyÞ of %PeðyÞ is
dissipated in the master oscillator such that

ðy2=2Þ %PoðyÞ ¼ Ze
oðyÞ; Ze

oðyÞ ¼ Zo; %PoðyÞ ¼ ½PoðyÞ=foEoK ðyÞg	 ð9aÞ

and the portion %PosðyÞ of %PeðyÞ is dissipated in the satellite oscillators and in the couplings

ðy2=2Þ %PosðyÞ ¼ Ze
I ðyÞ; %PosðyÞ ¼ ½PosðyÞ=foEoK ðyÞg	; ð9bÞ

where, as already intimated, the superscript e indicates that the loss factors are determined via an
EA and not via an LIA. Thus, Ze

I ðyÞ is the induced loss factor derived on the basis of the EA. The
conservation of energy (the balance of power) demands that

%PeðyÞ ¼ %PoðyÞ þ %PosðyÞ: ð10Þ

Employing Eq. (6b), Eq. (9b) may be decomposed in the form

%PosðyÞ ¼
XR

1

%PorðyÞ; %PorðyÞ ¼ %PrðyÞ þ %PcrðyÞ; ð11Þ
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where by definition

%PrðyÞ ¼ Zr
%ErðyÞ; %PcrðyÞ ¼ Zcr

%EcrðyÞ: ð12Þ

Again, the loss factors Zr and Zcr are the stiffness control loss factors associated with the springs
on the fore and the back sides of the mass mr of the rth satellite oscillator. The spring on the back
side constitutes the stiffness element in the coupling form. The spring on the fore side renders the
satellite oscillator an oscillator rather than merely a mass. It is assumed that the damping is
provided in these springs only [1,2]. Provisions for other types of damping can be made, but the
increase in algebraic complexity can hardly be justified at this stage.

From Eqs. (9b), (11) and (12) one obtains the energetic version of the induced loss factor Ze
I ðyÞ

in the form

Ze
I ðyÞ ¼

XR

1

Ze
IrðyÞ; Ze

IrðyÞ ¼ ðy2=2ÞfZr
%ErðyÞ þ Zcr

%EcrðyÞg; ð13Þ

where %ErðyÞ and %EcrðyÞ are more explicitly expressed in Eqs. (4b) and (4c). The induced loss factor
ZI ðyÞ; derived via LIA, is explicitly expressed in Eq. (7c) and is extensively investigated in Refs.
[1,2]. To what degree then is Ze

I ðyÞ stated in Eq. (13) equal to ZI ðyÞ? To establish analytically the
answer to this question may require undue algebraic manipulations which, again, can hardly be
justified at this stage. Instead, the equivalence is cursorily tested computationally. The
computations with respect to Ze

I ðyÞ are guided by computations performed in Ref. [2]. Again,
as in Ref. [2], it is convenient, with only a slight loss in generality, to impose a similarity on the
stiffnesses (springs) that are placed on either side of the mass mr of the rth satellite oscillator;
namely

ðxrÞ
2 ¼ arðxo

r Þ
2; ðxcrÞ

2 ¼ acrðxo
r Þ

2; ð14aÞ

where xo
r defines a designed distribution for the normalized resonance frequencies of the satellite

oscillators and ar and acr are the spring factors. In that design the resonance frequencies ascend
according to the value of the index r; i.e., ðxrrÞ

2pðxqqÞ
2; q ¼ ðr þ 1Þ; 1prpðR � 1Þ; and the

numbers of resonance frequencies on either side of the resonance frequency oo of the master
oscillator in isolation, are equal. Once again as in Refs. [1,2], xo

r is assigned the specific form

xo
r ¼ ½1 þ fð1 þ RÞ � 2rgðg=2RÞ	�1=2; go1; zo

r ¼ ðxo
r=yÞ ð14bÞ

and is graphically depicted in Fig. 2a of Ref. [2]. In the same vein, the loss factors Zr and Zcr that
are assigned to the satellite oscillators and to their couplings are, again, conveniently designated in
terms of the modal overlap parameters br and bcr; respectively, namely

Zr ¼ ðbr=yÞ½nrðyÞoo	�1; Zcr ¼ ðbcr=yÞ½nrðyÞoo	�1;

ZrrðxrrÞ
2 ¼ ZrðxrÞ

2 þ ZcrðxcrÞ
2 ) ½ðZrarÞ þ ðZcracrÞ	ðxo

r Þ
2; ð14cÞ

where nrðyÞ is the modal density of the satellite oscillators and Eq. (5) is used [1,3]. Copying the
conditions in the computations performed in Ref. [2] these parameters, as well as the mass
elements and the parameters that specify the couplings of the satellite oscillators, are assumed to
be independent of the index that identifies a satellite oscillator; namely

br ¼ bcr ¼ b; %mr ¼ %m; %mcr ¼ %mc; ar ¼ a; acr ¼ ac; gr ¼ g: ð15Þ
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Under these impositions and from Eq. (14b), Eq. (14c) reduces to

Zr ¼ Zcr ) ZðyÞ ¼ ðb=yÞ½nsðyÞoo	�1; ½nsðyÞoo	�1 ¼ ðg=2RÞðyÞ3;

ZðyÞ ¼ ðb=RÞðg=2ÞðyÞ2; ð14dÞ

where ZðyÞ is the loss factor as assigned to a satellite oscillator with a normalized resonance
frequency that lies in the vicinity of the normalized frequency (y). The loss factor Zr; in Eq. (14d),
is graphically depicted in Fig. 2(b) of Ref. [2]. Further, with these simplifications in place,
straightforward, but tedious, algebraic manipulations of Eqs. (4) and (5) and with the use of
Eq. (13), one may derive

Ze
IrðyÞ ¼ ZeðyÞ %EorðyÞ ¼ ðb=RÞðg=2Þðy4=2ÞEorðyÞ; ð16aÞ

where

%EorðyÞ ¼ %mð1 þ %mcÞ
�2f½1 � ðzo

r Þ
2	2 þ ½ðzo

r Þ
2ZðyÞ	2g�1

 f½1 þ aðzo
r Þ

2	½f %mc þ acðzo
r Þ

2g2 þ facZðyÞðzo
r Þ

2 � ðg=yÞg2	

þ %mc½f1 � ð1 þ %mc þ acÞðzo
r Þ

2g2 þ ftþðyÞg
2	

þ ½acðzo
r Þ

2	½fð1 þ 2 %mcÞ � aðzo
r Þ

2g2 þ ft�ðyÞg
2	

� ð %g=yÞ½f1 � ð1 þ %mc þ acÞðzo
r Þ

2gfaZðyÞðzo
r Þ

2 þ ðg=yÞg

� fð1 þ 2 %mcÞ � aðzo
r Þ

2gfð1 þ %mc þ acÞZðyÞ � ðg=yÞg	g ð16bÞ

and the explicit expressions for tþðyÞ and t�ðyÞ are

tþðyÞ ¼ ð1 þ %mcÞZðyÞðzo
r Þ

2 þ ½acZðyÞðzo
r Þ

2 � ðg=yÞ	;

t�ðyÞ ¼ ð1 þ %mcÞZðyÞðzo
r Þ

2 � ½acZðyÞðzo
r Þ

2 � ðg=yÞ	: ð16cÞ

Using Eq. (16) the energetically determined induced loss factor Ze
I ðyÞ is computed, as a function

of the normalized frequency ðyÞ; and the results are recorded. Analogously to Ref. [2], these
computations are carried out assigning the standard values

%mc ¼ g ¼ 0; ac ¼ 1; ðMs=MoÞ ¼ 10�1; b ¼ 0:1; g ¼ 0:6 and R ¼ 27; ð17Þ

where %mc; g and ac define the couplings, g is the frequency bandwidth, Ms ¼ Rm defines the global
mass of the satellite oscillators and R is the number of satellite oscillators in the set. When these
standard assignments are deviated from, specific mentions are to be rendered, notwithstanding
that, at times, the employment of these standard values may be reiterated. It transpires that the
computed results, under the standard value and the several variations on these values, yield levels
of Ze

I ðyÞ that are identical to those determined in Ref. [2] for the induced loss factor ZI ðyÞ: For this
reason, there is no need to repeat the results of these computations; the results presented in Figs.
3–5 of this reference suffice. One may inquire: what about the results concerning the mean-value
levels of the induced loss factor /ZI ðyÞS; how do they compare with the mean-value levels of the
energetically determined induced loss factor /Ze

I ðyÞS? Repeating the procedure, proposed in Refs.
[1,2], the mean-value levels /Ze

I ðyÞS of this induced loss factor are determined:

/Ze
I ðyÞS ¼

XR

1

ðR0Þ�1
XðR0=2Þ

r0¼ð�R0=2Þ

Ze
I ðy; r þ ðr0=R0Þ	 )

Z Rþð1=2Þ

ð1=2Þ
Ze

I ðy; rÞ dr: ð18Þ
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Rendering the index r continuous in Eq. (16) and substituting the result in Eq. (18), one
evaluates /Ze

I ðyÞS by carrying out the integration [2]. This evaluation yields

/Ze
I ðyÞS ¼ D½CðyÞ þ OefZeðyÞg2	; Ze1

I ðyÞ ¼ DCðyÞ; ð19Þ

where ðDÞ; CðyÞ; Oe and the range of validity in y are

D ¼ ½ðp=2Þð2=gÞðMs=MoÞ	; Ms ¼ ðRmÞ; ð20aÞ

C ¼ ½ð %mc þ acÞ
2 þ ðg=yÞ2	½1 þ %mc	�1; ð1 þ %mcÞ ¼ ðaþ acÞ; ð20bÞ

Oe ¼ ð1=2Þ½ð1 þ %mcÞðmc þ acÞ þ 2 %mcac	; ð20cÞ

½1 þ ðg=2Þ	�ð1=2Þpyp½1 � ðg=2Þ	�ð1=2Þ; DðyÞCðg=2Þ; ð20dÞ

respectively. Again, analogous to the definition in Ref. [2], Ze1
I ðyÞ is the first order approximation

(FOA) of /Ze
I ðyÞS: From a consultation with Ref. [2], one finds that not only is ZI ðyÞ ¼ Ze

I ðyÞ; but
also Z1

I ðyÞ ¼ Ze1
I ; notwithstanding that the higher approximations in the two cases, O versus Oe;

are rather different. As argued previously, this difference lies outside the scope of Ref. [2] as well
as of this paper. Clearly, since the FOA Z1

I ðyÞ is depicted in Figs. 3–5 of Ref. [2], this depiction, as
do the rest of the curves in these figures, pertain in full to the energetically determined forms of the
induced loss factor. With this equivalence in mind, the focus is shifted toward matters that pertain
largely to the EA and transcend the equivalence just mentioned.

4. Renormalization of stored energies and powers—illegitimate and legitimate loss factors

Quantities, e.g., the stored energy EosðyÞ and the dissipated power PosðyÞ; when normalized by
EoK ðyÞ and foEoK ðyÞg; respectively, are designated by a single bar; namely, %EosðyÞ and %PosðyÞ:
Situations arise in which a normalization by EoðyÞ and foEoðyÞg; respectively, may be preferred.
Such normalizations are to be designated by a double bar; namely, %%EosðyÞ and %%PosðyÞ; respectively.
In particular then,

Z
N
ðyÞ ¼ ½PoðyÞ=foEoðyÞg	 ¼ %%PoðyÞ ¼ 2½1 þ ðyÞ2	�1Zo; ð21aÞ

Ze
oI ðyÞ ¼ ½PosðyÞ=foEoðyÞg	 ¼ %%PosðyÞ ¼ 2½1 þ ðyÞ2	�1Ze

I ðyÞ; ð21bÞ

Ze
oI ðyÞ ¼

XR

1

ZrðrÞ %%EorðyÞ ¼ ZeðyÞ %%EosðyÞ;

Ze
oI ðyÞ ¼ 2½1 þ ðyÞ2	�1Ze

I ðyÞ ¼ ½ZeðyÞXs
oðyÞ	; ð21cÞ

Xs
oðyÞ ¼

%%EosðyÞ ¼ ½EosðyÞ=EoðyÞ	; ZeðyÞ ¼ 2½1 þ ðyÞ2	�1ZðyÞ: ð21dÞ

It emerges then that whereas the loss factor Zo assigned to the master oscillator and the loss
factor Ze

I induced in the master oscillator by a set of satellite oscillators are governed by the
normalization employing the kinetic energy EoK ðyÞ and the power foEoK ðyÞg; the loss factors
Z
N
ðyÞ and Ze

oI ðyÞ are governed, correspondingly, by quantities normalized by the stored energy
EoðyÞ and the power foEoðyÞg: The stored energy EoðyÞ is the combined energy, consisting of the

ARTICLE IN PRESS

G. Maidanik, K.J. Becker / Journal of Sound and Vibration 266 (2003) 33–4840



kinetic energy EoK ðyÞ and the potential energy EoPðyÞ stored in the master oscillator, EoðyÞ ¼
EoK ðyÞ þ EoPðyÞ; as stated in Eq. (1). Eq. (21) is just a renormalized version of Eq. (13). The ratio
of the energy EosðyÞ stored in the satellite oscillators and in the couplings to that of the energy
EoðyÞ stored in the master oscillator is dubbed the global coupling strength and, as such, is
designated Xs

oðyÞ: Related to this quantity is the modal coupling strength zs
oðyÞ; the relationship is

Xs
oðyÞ ¼ ½nsðyÞ=noðyÞ	z

s
o; R ¼ DðyÞ½nsðyÞoo	; No ¼ DðyÞ½noðyÞoo	; ð22Þ

where noðyÞ and nsðyÞ are the modal densities in the master and in the adjunct dynamic systems,
respectively. The significance of Eq. (22) will subsequently emerge. At this stage a minor
digression may be in order: Were one to construct, from Eqs. (19) and (21c), the hybrid expression

½ZeðyÞXs
oðyÞ	h ¼ 2½1 þ y2	�1 Ze1

I ðyÞ; bp1;

Ze
I ðyÞ; bX1;

(
ð23a;bÞ

then, except for erosion at the higher values of the modal overlap parameter, b > 1; one finds the
hybrid quantity ½: : : : 	h to be largely independent of b [1,2]. Referring to Eq. (22), it follows that
in the hybrid milieu ZeðyÞ is inversely proportional to Xs

oðyÞ and vice versa. Taking note of
Eq. (19), there is no way for a physically acceptable complex to entertain a vanishing ZeðyÞ: Of
course, Eq. (23) does not fall under this spell, but neither can one ignore the undulations that beset
the energetically determined induced loss factor Ze

I ðyÞ when b is reduced with the intention of
rendering ZeðyÞ negligible [1,2].

Being cognizant of the second of Eq. (21d), the global coupling strength Xs
oðyÞ may feature in

another renormalization in which the entire energy EeðyÞ stored in the complex is employed. This
stored energy is given by

EeðyÞ ¼ EoðyÞ þ EosðyÞ ¼ EoðyÞ½1 þ Xs
oðyÞ	 ð24Þ

and the corresponding normalization for the powers is given by foEeðyÞg: Such renormalizations
are to be designated by a tilde over the quantity, e.g.,

*EosðyÞ ¼ ½EosðyÞ=EeðyÞ	; *Pos ¼ ½PosðyÞ=foEeðyÞg	: ð25aÞ

From Eqs. (21), (24) and (25a) one may derive

*EosðyÞ ¼ ½EosðyÞ=EeðyÞ	 ¼ %EosðyÞ½1 þ Xs
oðyÞ	

�1 ð25bÞ

*PosðyÞ ¼ ½PosðyÞ=foEeðyÞg	 ¼ %%PosðyÞ½1 þ Xs
oðyÞ	

�1; ð25cÞ

%%EeðyÞ ¼ ½1 þ Xs
oðyÞ	: ð25dÞ

The two renormalizations just introduced, in Eqs. (21) and (25), lead to the definition of two
distinct loss factors. The first is defined in terms of the energy EoðyÞ stored in the master oscillator
only, namely

Ze
t ðyÞ ¼ ½PeðyÞ=foEoðyÞg	 ¼ ½Z

N
ðyÞ þ ZeðyÞXs

oðyÞ	; ð26aÞ

where use is made of Eqs. (8) and (10). The second is defined in terms of the energy EeðyÞ stored in
the entire complex, namely

Ze
eðyÞ ¼ PeðyÞ=foEeðyÞg ¼ Ze

t ðyÞ½1 þ Xs
oðyÞ	

�1; ð27aÞ
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where use is made of Eqs. (25) and (26a). These two loss factors were previously defined and
discussed in Refs. [5,6]. In these discussions it was claimed that Ze

t ðyÞ is not a legitimate loss factor.
This designation was primarily predicated on assigning to the definition of this loss factor the
entire external input power PeðyÞ; but accounting for the stored energy EoðyÞ in the master
oscillator only, thereby ignoring the portion of the stored energy that is maintained in the satellite
oscillators and in the couplings. (No wonder the question of ‘‘where did the energy go?’’ arose
from accepting Ze

t ðyÞ as a legitimate loss factor [6–11].) In this connection one recalls, from
Eqs. (21) and (24), that

Ze
t ðyÞ ¼ ½Z

N
ðyÞ þ Ze

oI ðyÞ	; Ze
oI ðyÞ ¼ ½ZeðyÞXs

oðyÞ	: ð26bÞ

Again, since Ze
oI ðyÞ is found to be largely independent of ZeðyÞ; one concludes, from Eq. (26b),

that Ze
t ðyÞ is also independent of ZeðyÞ: Eqs. (26a) and (26b) makes clear that to change Ze

t ðyÞ either
the coupling parameters, the mass ratio ðMs=MoÞ; or both need changing. In this assessment, Zo is
assumed to be fixed, and Z

N
ðyÞ ¼ 2Zoð1 þ y2Þ�1 [cf., Eq. (21a)]. On the other hand, the second loss

factor, dubbed the effective loss factor and designated Ze
eðyÞ; does take into account the whole

energy stored in the complex [5,6]. It may thus be designated a legitimate loss factor. From
Eqs. (24) and (27a) one finds

Ze
eðyÞ ¼ Ze

t ðyÞfZ
eðyÞ½ZeðyÞ þ Ze

oI ðyÞ	
�1gpZe

t ðyÞ: ð27bÞ

In particular, if the induced loss factor Ze
oI ðyÞ exceeds the indigenous loss factor Z

N
ðyÞ of the

master oscillator, Eq. (27b) may be reduced to

Ze
eðyÞD½ZeðyÞZe

oI ðyÞ	½Z
eðyÞ þ Ze

oI ðyÞ	
�1o

Ze
oI

ZeðyÞ

(
; Z

N
ðyÞoZo

oI ðyÞ: ð27cÞ

Thus, the effective loss factor Ze
eðyÞ; under this condition, is a parallel combination of the

induced loss factor Ze
oI ðyÞ and the loss factor ZeðyÞ assigned to a typical satellite oscillator. It

follows that Ze
eðyÞ is less than either one of these loss factors, as stated in Eq. (27c). Consider a

reasonable complex for which Ze
oI ðyÞ > ZeðyÞ: Under this additional condition, Eq. (27c) may be

reduced to

Ze
eðyÞDZeðyÞ; ZoI ðyÞbZeðyÞ;Xs

oðyÞb1; Ze
e5Ze

t ðyÞ: ð28Þ

The loss factors Ze
t ðyÞ and Ze

eðyÞ; as functions of y; are evaluated and contrasted. Again, only a
few representative cases are displayed. The displays are given in Figs. 2–4. The presentation covers
cases that parametrically conform to those governing Figs. 3–5 of Ref [2], respectively. The two
loss factors, Ze

t ðyÞ and Ze
eðyÞ; are contrasted on the same figure and each is compounded by a

superimposition of curves that pertain, in turn, to modal overlap parameters b ¼
ð0:1Þ; ð2:0Þ and ð10Þ: The disparity between Ze

t ðyÞ and Ze
eðyÞ is significantly high for the lower

values of the modal coupling overlap ðbÞ; at the higher values of b; the disparity largely dissipates.
It is also observed that the disparity is dependent not only on the coupling strength, but also
slightly on the number of satellite oscillators in the set; e.g., compare Figs. 2 and 3.

In addition to the evaluations of Ze
t ðyÞand Ze

eðyÞ the corresponding levels of ½ðRÞ�1Xs
oðyÞ	 are also

evaluated, as a function of y; and are displayed in Figs. 5–7. Since in the complex under
investigation, No ¼ 1; Eq. (22) defines the quantity ½ðRÞ	�1Xs

oðyÞ	 as equal to the modal coupling
strength zs

oðyÞ: Again, three curves that pertain to the modal overlap parameters b ¼ ð0:1Þ; (2.0)
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and (10) are superimposed in these figures. The undulations in the levels when b is less than unity
and the suppression of the undulations when b is in excess of unity is clearly apparent in these
figures. The first order approximation (FOA) of zs

oðyÞ are also superimposed on these figures. This
superimposition exposes, once again, the phenomenon that the mean-value averaging of the
undulations coincide with the FOA and that the phenomenon of erosion commences and
increases as b approaches and increases beyond unity [1,2,5,10]. A significant feature, nevertheless,
is revealed in Figs. 5–7: contrary to its value in the SEA the modal coupling strength zs

oðyÞ in the
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Fig. 2. Loss factors Ze
t ðyÞ: , b ¼ 0:1; , 2.0; - - - - -, 10; and Ze

eðyÞ: , b ¼ 0:1; , 2.0; ——, 10; as functions

of y; with stiffness control couplings. R ¼ 27; Ms=Mo ¼ 0:1 and Zo ¼ ð10�3Þ: Sprung masses: ac ¼ 1:0 ða ¼ 0:0Þ; g ¼
%mc ¼ 0 (strong coupling).

Fig. 3. Same as Fig. 2, except that R is changed from 27 to 7.
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EA may exceed unity. Indeed, when the coupling is strong, as it is in Figs. 5 and 6, and b is an
order of magnitude less than unity, zs

oðyÞ substantially exceeds unity. Moreover, even for moderate
coupling, as it is in Fig. 7, and b ¼ 0:1; zs

oðyÞ is close to unity. Only for weak coupling and/or for b
that exceeds unity, is zs

oðyÞ much less than unity. The significance of this feature is examined next.

ARTICLE IN PRESS

Fig. 4. Loss Factors Ze
t ðyÞ (dashed) and Ze

eðyÞ (solid), as functions of y; with gyroscopic control couplings. R ¼
27; Ms=Mo ¼ 0:1 and Zo ¼ ð10�3Þ: Shown are curves for three values of the modal overlap parameter ðbÞ: , b ¼ 0:1;

, 2.0; - - - - -, 10; , b ¼ 0:1; , 2.0; ——, 10; ac ¼ %mc ¼ 0 ða ¼ 1:0Þ; g ¼ 0:15 (moderate coupling).

Fig. 5. Modal coupling strength zs
oðyÞ; as a function of y; for sprung masses: ac ¼ 1:0 ða ¼ 0:0:Þ; g ¼ mc ¼ 0 (strong

coupling). Shown are curves pertaining to three values of the modal overlap parameter (b): , b ¼ 0:1; , 2.0;

——, 10; and the first order approximation (FOA): , b ¼ 0:1; , 2.0; ; 10. R ¼ 27; Ms=Mo ¼ 0:1:
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5. Relationship to the SEA

It may be conducive to include in this paper a possible relationship between the EA, dealt with
in the preceding two sections, and the SEA. The latter analysis was initiated in the early 1960s at
BBN and subsequently has become a major tool in noise control engineering [3,15,16]. A
rudimentary SEA is applied to a complex comprising of a master oscillator coupled to a set of
individual satellite oscillators; the satellite oscillators are neither coupled to each other nor
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Fig. 6. Same as Fig. 5, except that R is changed from 27 to 7.

Fig. 7. Modal coupling strength zs
oðyÞ; as a function of y; for gyroscopic control couplings: ac ¼ %mc ¼ 0 ða ¼ 1:0:Þ;

g ¼ 0:15 (moderate coupling). Shown are curves pertaining to three values of the modal overlap parameter (b): ,

b ¼ 0:1; , 2.0; ——, 10 and the first order approximations (FOA): , b ¼ 0:1; , 2.0; ; 10. R ¼
27; Ms=Mo ¼ 0:1:
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externally driven [cf., Fig. 1]. In terms of SEA the equations that govern the energy distribution in
the complex are

½Z
N
ðyÞ þ

XR

1

ZroðyÞ	EoðyÞ �
XR

1

ZorðyÞEorðyÞ ¼ ½PeðyÞ=o	; ð29aÞ

½ZrðyÞ þ ZorðyÞ	EorðyÞ � ZroðyÞEoðyÞ ¼ 0; ð29bÞ

where EoðyÞ; EorðyÞ; ZNðyÞ; ZrðyÞ and PeðyÞ are previously defined with respect to Eqs. (1)–(3),
(6b), (8), (14c) and (21a) [3,16]. In Eq. (29), ZorðyÞ and ZroðyÞ are the coupling loss factors from the
rth satellite oscillator to the master oscillator and vice versa, respectively. In conservative
couplings, ZorðyÞ ¼ ZroðyÞ [3]. After a straightforward algebraic manipulation of Eq. (29) one
obtains

Ze
t ðyÞ ¼ ½Z

N
ðyÞ þ Ze

oI ðyÞ	; Ze
oI ðyÞ ¼

XR

1

ZrðyÞz
r
oðyÞ;

zr
oðyÞ ¼ ½EorðyÞ=EoðyÞ	 ¼ ZroðyÞ½ZrðyÞ þ ZorðyÞ	

�1; ð30Þ

where Eqs. (26a) and (26b) is consulted and zr
oðyÞ is the modal coupling strength of the rth satellite

oscillator to the master oscillator [3,16]. With a sleight-of-statistical hand, Eq. (30) may be
converted to read

Ze
oI ðyÞ ¼ ZeðyÞXSEAðyÞ; XSEA

o ðyÞC
XR

1

zr
oðyÞ ¼ RzSEA

o ðyÞ;

zSEA
o ðyÞCZe

osðyÞ½Z
eðyÞ þ Ze

osðyÞ	
�1o1; ð31Þ

where ZeðyÞ and Ze
osðyÞ are a typical loss factor and a typical coupling loss factor to the master

oscillator, respectively, of a satellite oscillator with normalized resonance frequency that lies in the
vicinity of the normalized frequency (y). The superscript (SEA) designates quantities derived on
the basis of SEA [3]. It is a tenet of the SEA that the model coupling strength zSEA

o ðyÞ is less than
unity, as is emphasized in Eq. (31).

From Eq. (14d), (21) and (22) the modal coupling strength zr
oðyÞ derived via the EA is given by

zs
oðyÞ ¼ Ze

I ðyÞ½RZðyÞ	�1 ¼ Ze
I ðyÞ½ðbg=2ÞðyÞ2	�1: ð32aÞ

Taking mean-value levels ala Skudrzyk on both sides of Eq. (32a), one obtains

/zs
oðyÞS ¼ /Ze

I ðyÞS½ðbg=2ÞðyÞ2	�1: ð32bÞ

Using Eq. (19), the FOA zs1
o ðyÞ for the modal coupling strength becomes

zs1
o ðyÞ ¼ Ze1

I ðyÞ½ðbg=2ÞðyÞ2	�1 ¼ D½ðg=2Þy2	�1½CðyÞ=b	;

D ¼ðp=2Þð2=gÞðMs=MoÞ; CðyÞ ¼ ½ð %mc þ acÞ
2 þ ðg=yÞ2	½1 þ %mc	�1 ð33aÞ

and hence

zs1
o ¼ ðp=2Þ½2=ðgyÞ	2ðMs=MoÞ½CðyÞ=bÞ	: ð33bÞ

For the EA, appropriately averaged, to be compatible with the SEA, zs1
o ðyÞ needs to be necessarily

maintained below unity. Imposing this necessary condition on Eq. (33) requires b to exceed the
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threshold value btðyÞ: b > btðyÞ: The condition, by definition, extends only over the normalized
frequency range that spans the normalized resonance frequencies of the satellite oscillators. From
Eq. (33) one obtains, for the complex under investigation, the expression for the threshold in the
form

btðyÞCðp=2Þ½2=ðgyÞ2	ðMs=MoÞ½CðyÞ	;

½1 þ ðg=2	�1=2pyp½1 � ðg=2Þ	�1=2: ð34Þ

It thus emerges that SEA has a modal overlap parameter threshold; a situation arises in which
SEA is not valid for certain degrees of coupling strengths unless the modal overlap parameter
exceeds that threshold. In Fig. 8, btðyÞ is depicted as a function of y; for the standard values of g
and Ms=Mo stated in Eq. (17) and for three values of CðyÞ : 1:0; 3  10�2 and 10�3 [2]. One finds,
for example, that when the coupling is strong, CðyÞ ¼ 1; as is the case for sprung masses, the
threshold btðyÞ may exceed unity. Even for moderate coupling, CðyÞ ¼ 3  10�2; the threshold
values shown in Fig. 8 is not far below unity. Only for weak coupling, CðyÞ ¼ 10�3; is the value of
the threshold far below unity. Of course, in this last situation the modal coupling strength zs

oðyÞ
undulates. These undulations are, by definition, suppressed in the corresponding first order
approximation (FOA). One is reminded that this quantity governs Fig. 8 and Eq. (34) and,
therefore, no undulations in levels appear [cf., Figs. 5–7 and Eq. (23)].
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